

XIV School on Synchrotron Radiation: Fundamentals, Methods and Applications Muggia, Italy / 18-29 September 2017

Catalysis with SR: ex-situ, in —situ and Operando conditions

C. Lamberti

Department of Chemistry, University of Turin (Italy)

Souther Federal University Rostov-on-Don, Russia

Nanostructured Interfaces and Surfaces Centre of Excellence

Università di Torino

A selection of several other examples: CHEMICAL REVIEWS

Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques

Silvia Bordiga,[†] Elena Groppo,[†] Giovanni Agostini,[†] Jeroen A. van Bokhoven,^{‡,§} and Carlo Lamberti^{*,†}

[†]Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy

[‡]ETH Zurich, Institute for Chemical and Bioengineering, HCI E127 8093 Zurich, Switzerland

[§]Laboratory for Catalysis and Sustainable Chemistry (LSK) Swiss Light Source, Paul Scherrer Instituteaul Scherrer Institute, Villigen, Switzerland

2.3.7. Codes for Handling the Huge Numbers	
of Spectra Generated in Time or Space	
Resolved Experiments	1757
2.3.8. Debye–Waller Factors and Disorder	1757
2.3.9. Differential XAFS Approach	1758
2.4. Atomic XAFS or AXAFS	1759
2.4.1. Brief Historical Overview	1759
2.4.2. Physical Principles of AXAFS	1760
2.5. Other Related Techniques	1761

Chem. Rev., 113 (2013) 1736–1850

The complexity of a catalyst: Nature of the support **Concentration of the active phase Deposition methods** Addition of dopants **P**, **T** Possible presence of spectators Aging effects Poisoning Deactivation

New researchs discover the actual cause of the global warming

New researchs discover the actual cause of the global warming

Number of Pirats actives in the caribbean sea

Bordiga et al. Chem. Rev., 113 (2013) 1736–1850

Bordiga et al. Chem. Rev., 113 (2013) 1736–1850

The relevance of surfaces

There is NO life on earth ! NO, it is a surface phenomenon !

We avoided an invasion because aliens had no surface sensitive techniques

Transmission techniques are basically bulk techniques

... but catalysis is related with surface sites XPS; UPS; soft-XAS; hard XAS detected in EY

MgO morphology

100 nm

MgO smoke Mg(metal) + $\frac{1}{2} O_2 \rightarrow MgO$

$(< 1 m^2/g)$

Spoto et al. Prog. Surf. Sci. 76 (2004) 71-146.

MgO sintered (40 m²/g)

Spoto et al. Prog. Surf. Sci. 76 (2004) 71-146.

Spoto et al. Prog. Surf. Sci. 76 (2004) 71-146.

MgO sintered (230 m²/g)

counts

10488 J. Phys. Chem. C, Vol. 113, No. 24, 2009

PCCC

AUGUST 24, 2017 VOLUME 121 NUMBER 33

pubs.acs.org/JPCC

THE JOURNAL OF PHYSICAL CHEMISTRY

ENERGY CONVERSION AND STORAGE, OPTICAL AND ELECTRONIC DEVICES, INTERFACES, NANOMATERIALS, AND HARD MATTER

J. Phys. Chem. C 2017, 121, 18202–18213

Core-Shell Structure of Palladium Hydride Nanoparticles Revealed by X-ray Absorption Spectroscopy and Diffraction

The Journal of Physical Chemistry C

Article

The building-up of a zeolitic framework

Sodalite

Linde Type A

BEA

MFI

In situ template burning by XRPD

Cu+-zeolites: Interests & Applications

Prestipino et al., Chem. Phys. Lett., 2002, 363 , 389 Llabrés i Xamena et al., J. Phys. Chem. B, 2003, 107, 7036

N on *Cu+-ZSM-5*

Geometry of the Cu+(CO) complex in ZSM-5: XANES spectra

C. Lamberti, et al. Angew. Chem. Int. Ed., 39 (2000) 2138-2141 Local structure of [CuI(CO)]+ adducts hosted inside ZSM-5 zeolite

C. Prestipino, et al. Phys. Chem. Chem. Phys., 7 (2005) 1743

C. Prestipino, et al. PCCP., 7 (2005) 1743

C. Lamberti, et al. Angew. Chem. Int. Ed., 39 (2000) 2138

Cu+-Y: IR spectroscopy of CO at 80 K

Cu+-Y:EXAFS data: GILDA BM8 @ ESRF

It was not possible to refine the EXAFS data neither assuming one single Cu+ site nor assuming two different Cu+ environments

Cu+-Y still remains a puzzle

Cu+-Y: in situ XRPD data @ ESRF (80 K)

Cu+-Y: XRPD explains EXAFS data

Cu+-Y:XRPD interaction with CO at 80 K

Cu+-Y: XRPD explains IR data

Prestipino et al., Chem. Phys. Let. 363 (2002) 389

Chem. Rev. 2013, 113, 1736-1850

Review

Chemical Reviews

IOP PUBLISHING

J. Phys. D: Appl. Phys. 46 (2013) 423001 (72pp)

TS-1: Interest & Applications

Higly active and - OH N_0-H 1:1 o:p selective catalyst Ph-OH for oxidation $RC = CH_2$ reactions using NH₃ hydrogen peroxide as oxidizing agent R₂NH R₂CH₂ R₂NOH $R_2C=0$ 30% H₂O₂ Industrial plants in **Europe and Japan RR'CHNH**₂ R₂S Notari, Adv. Catal. 1996, 41, 253, **RR'CHOH** Mantegazza, et al. J. Mol. Catal. A 1999, 146, 223 R₂SO RR'C = NOHBordiga et al. Angew. Chem. Int. Ed., 2002, 41, 4734 Bonino et al., J. Phys. Chem. B, 2004, 108, 3573

TS-1: XAFS data @ ESRF BM8 GILDA

TS-1: XAFS data @ ESRF BM8 GILDA

Zecchina et al., *Topics in Catal.*, **2002**, *21*, 67; F. Bonino, et al. *J. Phys. Chem. B*, **2004**, *108*, 3573 Prestipino et al. *ChemPhysChem.*, **2004**, *5*, 1799

The PVC $[-CH_2-CHCI-]_n$

- A wide use polymeric material
- It used in electronic, building,farmaceutic, and in several different kind of applications

The chemistry of PVC

The oxychlorination reaction (CuCl₂) : $C_2H_4 + 2HCI + \frac{1}{2}O_2 \rightarrow C_2H_4CI_2 + H_2O$

The cracking of 1,2-dichloroethane: $C_2H_4Cl_2 \rightarrow CH_2=CHCl+HCl$

Understanding the basic reactions

Catalyst: $CuCl_2/\gamma - Al_2O_3$

Evolution of the XANES spectra after interaction with reactants

a) Reduction of CuCl₂ to CuCl by C₂H₄ :

 $2CuCl_2 + C_2H_4 \rightarrow C_2H_4Cl_2 + 2CuCl$

b) Re-oxidation of CuCl by oxygen:

 $2CuCl + \frac{1}{2} O_2 \rightarrow Cu_2OCl_2$

c) Closure of the catalytic cycle by rechlorination by HCl yielding CuCl₂:

 $Cu_2OCl_2 + 2HCl \rightarrow 2CuCl_2 + H_2O$

G. Leofanti et al. *J. Catal.*, **189** (2000) 91; *J. Catal.*, **189** (2000) 105; *J. Catal.*, **202** (2001) 279; *J. Catal.*, **205** (2002) 275

Understanding the basic reactions

Catalyst: $CuCl_2/\gamma - Al_2O_3$

Evolution of the XANES spectra after interaction with reactants

a) Reduction of CuCl₂ to CuCl by C₂H₄ :

 $2CuCl_2 + C_2H_4 \rightarrow C_2H_4Cl_2 + 2CuCl$

b) Re-oxidation of CuCl by oxygen:

 $2CuCl + \frac{1}{2} O_2 \rightarrow Cu_2OCl_2$

c) Closure of the catalytic cycle by rechlorination by HCl yielding CuCl₂:

 $Cu_2OCl_2 \ + \ 2HCl \rightarrow 2CuCl_2 \ + \ H_2O$

G. Leofanti et al. *J. Catal.*, **189** (2000) 91; *J. Catal.*, **189** (2000) 105; *J. Catal.*, **202** (2001) 279; *J. Catal.*, **205** (2002) 275

Experiment description @ ID24

- Ramp up from 373 to 623 K
- Isotherm at 623 K
- Ramp down from 623 back to 373 K

Description of the experimental set-up @ ID24

$K-CuCl_2/\gamma-Al_2O_3$ catalyst

Ramp up: Cu(II) \rightarrow Cu(II)+Cu(I)

